

ЗАО НПФ ПРОРЫВ

Модем RS232-FX969 Руководство по эксплуатации

Содержание

1	B	ведение	4
	1.1	Цель документа	4
	1.2	Термины, аббревиатуры и сокращения	4
	1.3	Ссылки	5
2	Oı	писание и работа	6
	2.1	Общие сведения	6
	2.	1.1 Наименование изделия	6
	2.	1.2 Условное обозначение изделия	6
	2.	1.3 Назначение изделия	6
	2.	1.4 Область применения	7
	2.	1.5 Параметры применения	7
	2.	1.6 Размеры изделия	7
	2.	1.7 Масса изделия	7
	2.2	Технические характеристики	7
	2.2	2.1 Общие сведения	7
	2.2	2.2 Показатели назначения	7
	2.2	2.3 Параметры электропитания изделия	8
	2.2	2.4 Устойчивость к воздействию внешних факторов	8
	2.2	2.5 Электромагнитная совместимость	9
	2.2	2.6 Безопасность	9
	2.2	2.7 Надежность	10
	2.3	Состав изделия	10
	2.4	Устройство и работа	12
	2.4	4.1 Режимы работы изделия	13
	2.4	4.2 Взаимодействие с другими изделиями, входящими в состав АС	14
	2.5	Функции, выполняемые изделием	15
	2.6	Маркировка и пломбирование	15
	2.0	6.1 Маркировка изделия	15
	2.0	6.2 Пломбирование изделия	15
	2.7	Упаковка	15
	2.	7.1 Упаковочная тара	15
	2.	7.2 Условия упаковывания	16
	2.	7.3 Порядок упаковки	16
3	И	спользование по назначению	17
	3.1	Эксплуатационные ограничения	17
	3.2	Подготовка изделия к использованию	17

	3.2.1 Меры безопасности			
	3.2.2	2 Объем и последовательность внешнего осмотра изделия	17	
	3.2.	3 Монтаж и демонтаж изделия	17	
	3.2.	4 Параметрирование изделия	18	
	3.3	Использование изделия	22	
	3.4	Меры безопасности	22	
4	Tex	ническое обслуживание	23	
	4.1	Техническое обслуживание изделия	23	
	4.2	Состав и квалификация персонала	23	
	4.3	Проверка работоспособности изделия	23	
	4.4	Техническое освидетельствование	23	
5	Тек	ущий ремонт	24	
6	Xpa	нение	25	
	6.1	Условия хранения изделия	25	
	6.2	Срок хранения	25	
	6.3	Предельный срок хранения	25	
	6.4	Правила постановки изделия на хранение	25	
	6.5	Правила снятия изделия с хранения	25	
7	Транспортирование20			
	7.1	Условия транспортирования	26	
	7.2	Подготовка к транспортированию	26	
8	Ути	лизация	27	
C	писок таблиц			
C	Список рисунков			
9	Лист регистрации изменений			
	Утверя	ждаю	29	

1 Введение

1.1 Цель документа

Руководство по эксплуатации (далее по тексту – РЭ) включает в себя общие сведения, предназначенные для ознакомления обслуживающего персонала с работой и правилами эксплуатации изделия Модем RS232-FX969 (далее по тексту – изделие, модем). Документ содержит технические характеристики, описание конструкции и принципа действия, а также сведения, необходимые для правильной эксплуатации изделия.

Перед началом работы необходимо ознакомиться с настоящим руководством, так как эксплуатация изделия должна проводиться лицами, ознакомленными с принципом работы и конструкцией изделия.

Изделие может обслуживать персонал, имеющий квалификационную группу по электробезопасности не ниже третьей.

Запрещается работа с изделием лицам, не сдавшим зачет по технике безопасности в установленном порядке.

В ходе эксплуатации изделия персоналу надлежит исполнять рекомендации, изложенные в отраслевой инструкции по защите от статического электричества.

Запрещается производить какие-либо работы на незакрепленном изделии.

Запрещается производить монтаж и демонтаж изделия при включенном электропитании изделия.

Изделие не требует проведения каких-либо видов технического обслуживания в течение всего срока эксплуатации.

Предприятие-производитель оставляет за собой право производить непринципиальные изменения, не ухудшающие технические характеристики изделия. Данные изменения могут быть не отражены в тексте настоящего документа.

1.2 Термины, аббревиатуры и сокращения

В документе используются следующие термины, аббревиатуры и сокращения:

Таблица 1. Термины, аббревиатуры и сокращения

Термин	Описание
AC	Автоматизированная система.
АСТУЭ	Автоматизированная система технического учета электроэнергии.
АСУ ТП	Автоматизированная система управления технологическим процессом.

ЗАО НПФ ПРОРЫВ 2019 ctp. **4** / **29**

Термин	Описание
ТК	Терминальный контроллер.
ЭД	Электронная документация.
4FSK	4-х уровневая частотная манипуляция (тип модуляции).
pp	Разница между положительным и отрицательным пиками (размах).
RMS	Root Mean Square (Квадратный корень среднего по времени значения квадрата отклонения от горизонтальной оси для асимметричных волн).
SCADA	Supervisory Control And Data Acquisition (Диспетчерское управление и сбор данных).

1.3 Ссылки

При разработке документа были использованы следующие материалы:

Таблица 2. Использованные при разработке документа материалы

Название	Источник	Версия
Модем RS232-FX969, технические условия	АВБЛ.467756.005 ТУ	

ЗАО НПФ ПРОРЫВ 2019 ctp. **5 / 29**

2 Описание и работа

2.1 Общие сведения

2.1.1 Наименование изделия

Молем RS232-FX969.

2.1.2 Условное обозначение изделия

Структура условного обозначения изделия см. Рисунок 1.

Пример записи обозначения изделия: Модем RS232-FX969 ABБЛ.467756.027.

2.1.3 Назначение изделия

Модем RS232-FX969 предназначен для передачи данных между терминальным контроллером/компьютером и радиостанцией. Скорость передачи данных 19200 бит/с. Модем применяется при построении пространственно-распределённых автоматизированных систем, в которых для передачи данных от удаленных объектов используется радиоканал.

Изделие предназначено к применению в составе:

- автоматизированных систем управления технологическими процессами (АСУ ТП);
- автоматизированных систем телемеханики;
- автоматизированных систем технического учёта электроэнергии и мощности (АСТУЭ);
- автоматизированных информационно-измерительных систем коммерческого учёта электроэнергии и мощности (АИИС КУЭ).

Основным назначением изделия является:

преобразование сигналов порта RS-232 компьютера ИЛИ терминального контроллера к тональным сигналам.

Для обеспечения надежной связи рекомендуется использовать модем с радиостанциями, имеющими специальный аксессуарный разъем, например, Motorola GM-340.

ЗАО НПФ ПРОРЫВ 2019 стр. 6 / **29**

2.1.4 Область применения

Изделие применяется в составе автоматизированных систем (АСУ ТП, SCADA, учета энергоносителей, телемеханики и т.п.) на промышленных предприятиях нефтедобычи, электроэнергетики, теплоэнергетики, газовой промышленности.

2.1.5 Параметры применения

Изделие обеспечивает возможность передачи данных между терминальным контроллером/компьютером и радиостанцией. Передача данных выполняется со скоростью 19200 бит/с с использованием алгоритма 4FSK.

2.1.6 Размеры изделия

Базовые размеры изделия составляют 35 х 97 х 58 мм.

2.1.7 Масса изделия

Масса изделия не более 0,1 кг.

2.2 Технические характеристики

2.2.1 Общие сведения

Изделие сертифицировано в составе аппаратно-программного комплекса для автоматизации учета энергоресурсов "ТЕЛЕСКОП+", разработанного ЗАО «НПФ Прорыв». Сертификат RU.C.34.004.А № 26737 выдан Федеральным Агентством по техническому регулированию и метрологии от 11.09.2012 г. Комплекс зарегистрирован в Государственном реестре средств измерений под № 19393-07 и допущен к применению на территории Российской Федерации.

При условии монтажа в специальный пылевлагозащитный шкаф степень защиты – IP55 по ГОСТ 14254-96.

2.2.2 Показатели назначения

В данном разделе приведены основные технические характеристики изделия (Таблица 3).

Таблица 3. Основные технические характеристики

Наименование параметра	Значение
Протокол связи	Разработан ЗАО «НПФ Прорыв»
Скорость передачи	19200 бит/с
Рекомендуемая амплитуда сигнала на входе модема (возможна регулировка уровня сигнала)	300-900 мВ (rms)
Амплитуда сигнала на выходе модема	150 мВ (rms)

ЗАО НПФ ПРОРЫВ 2019 ctp. **7** / **29**

Наименование параметра	Значение
Возможна регулировка уровня сигнала в диапазоне:	80 мВ – 1,5 В
Режим обмена	Полудуплексный
Гальваническая развязка со стороны RS-232	Оптронная с электрической прочностью не менее 1500 В

2.2.3 Параметры электропитания изделия

Электропитание изделия осуществляется от внешнего источника питания постоянного тока, напряжением 10-35 В. Ниже приведены параметры электропитания изделия (Таблица 4). Для подключения электропитания можно использовать источник питания радиостанции.

Внимание! Не рекомендуется подключать модем к источнику питания терминального контроллера, т.к. в этом случае не будет обеспечена гальваническая развязка ТК и радиостанции.

 Наименование параметра

 Ном.
 Мин.
 Макс.

 Значение напряжения постоянного тока, В
 12
 10
 35

 Потребляемая мощность, Вт
 50 мВт

Таблица 4. Параметры электропитания

2.2.4 Устойчивость к воздействию внешних факторов

Рабочие условия применения

Изделие удовлетворяет требованиям, предъявляемым к группе 4 ГОСТ 22261-94 в части климатических воздействий (рабочие условия применения). Ниже приведены рабочие условия применения изделия (Таблица 5).

Таблица 5. Рабочие условия применения изделия (климатические воздействия)

Влияющая величина	Значение
Диапазон рабочих температур	от минус 40 °C до плюс 60 °C
Относительная влажность, не более	95% при t=35 °C
Атмосферное давление	от 70 до 106,7 кПа

ЗАО НПФ ПРОРЫВ 2019 стр. **8** / **29**

Устойчивость к механическим воздействиям

Изделие удовлетворяет требованиям, предъявляемым к группе 4 ГОСТ 22261-94 в части устойчивости к механическим воздействиям (рабочие условия применения). Ниже приведены рабочие условия применения изделия (Таблица 6).

Таблица 6. Рабочие условия применения изделия (механические воздействия)

Влияющая величина	Значение
Вибрация:	
частота	от 20 до 25 Гц
максимальное ускорение	19.6 m/c^2
продолжительность воздействия	30 мин.
Механические удары многократного действия (для изделия в упаковке):	
пиковое ударное ускорение	49 m/c ²
длительность действия ударных импульсов	10-15 мс
суммарное количество импульсов	30000

Изделие не имеет резонансов конструкции при воздействии вибрации в диапазоне частот (5-35) Γ ц (0,35-17g) при амплитуде вибрации 0,35 мм.

2.2.5 Электромагнитная совместимость

Изделие устойчиво к воздействию радиочастотных электромагнитных полей.

Изделие удовлетворяет требованиям ГОСТ CISPR 24-2013, ГОСТ 30805.22-2013 (CISPR 22:2006), ГОСТ Р 51317.4.5 -99.

2.2.6 Безопасность

Изделие удовлетворяет требованиям по общей безопасности, предъявляемым ГОСТ 12.2.003-74 и ГОСТ 12.2.007-75.

Ниже приведены параметры безопасности изделия (Таблица 7).

Таблица 7. Параметры безопасности изделия

Наименование параметра	Значение
Электрическая прочность изоляции:	
между контактами сетевого питания, не менее	1,5 кВ
между информационными цепями и контактом заземления	500 B

ЗАО НПФ ПРОРЫВ 2019 ctp. **9** / **29**

Наименование параметра	Значение		
Сопротивление изоляции электрически не связанных цепей относительно друг друга:			
в нормальных условиях применения, не менее 20 МОм			
при температуре 60 °C и влажности не более 80%, не менее	5 МОм		
при температуре 30 °C и влажности 95%, не менее	2 Мом		

2.2.7 Надежность

Изделие является восстанавливаемым и удовлетворяет требованиям по надежности согласно ГОСТ 27.003-2016. Ниже приведены параметры надежности (Таблица 8).

Таблица 8. Параметры надежности

Наименование параметра	Значение
Среднее время наработки на отказ, не менее	100 000 ч
Срок службы, не менее	12 лет

2.3 Состав изделия

Конструктивно изделие выполнено в виде печатной платы внутри закрытого корпуса (ОКW «RAILTEC»). Корпус изделия предназначен для установки на DIN-рельс. Общий вид аппаратного блока, см. Рисунок 2.

Рисунок 2 Общий вид аппаратного блока изделия

ЗАО НПФ ПРОРЫВ 2019 ctp. **10** / **29**

Вид панели аппаратного блока с элементами подключения и индикации см. Рисунок 3.

Рисунок 3 Вид панели аппаратного блока с элементами подключения и индикации

Ниже приведена информация о возможностях использования портов изделия (Таблица 9). Информация об особенностях подключения устройств приведена в п.2.4.2.

Таблица 9. Использование портов

Тип порта/входа	Возможность подключения устройств
RS-232	Терминальный контроллер, компьютер.
Вход модема (IN)	Выход УНЧ радиостанции.
Выход модема (OUT)	Вход модулятора радиостанции.
Управление радиостанцией (РТТ)	Вход управления переключением радиостанции.

Выполняется светодиодная индикация режима работы изделия. В следующей таблице приведено соответствие состояний и кодов, используемых для индикации.

ЗАО НПФ ПРОРЫВ 2019 ctp. **11** / **29**

T ~	10	TT		_	
1 аблица	10.	Индикация	режимов	раооты	изделия

N пп	Наименование группы светодиодов индикации	Код состояния	Состояние
1	Светодиод индикации подключения питания	Мигает с частотой 0,5 Гц	Питание подключено
		Выключен	Питание не подключено
2		Включен	Передача данных от модема
передачи данных	передачи данных	Выключен	Данные не передаются

2.4 Устройство и работа

Модем подключается к последовательному порту RS-232 (компьютера или терминального контроллера) и выполняет преобразование его сигналов к тональным сигналам для работы с радиостанцией. Модем обеспечивает гальваническую развязку сигналов компьютера и сигналов на разъемах радиостанции. Напряжение питания модема гальванически развязано с сигналами последовательного порта RS-232.

Рисунок 4 Подключение модема

На плате модема предусмотрены специальные переключатели – перемычки: JP1, JP2. Описание назначения перемычек приведено ниже (Таблица 11).

ЗАО НПФ ПРОРЫВ 2019 ctp. **12** / **29**

Таблица 11. Использование перемычек

Обозн.	Назначение	Комментарий
JP1	Загрузка ПО	Установить перемычку для перевода модема в режим загрузки ПО.
JP2	Изменение параметров	Установить перемычку для перевода модема в режим изменения параметров входного и выходного сигналов.

Рисунок 5 Соответствие контактов разъема обозначениям перемычек

2.4.1 Режимы работы изделия

Изделие предназначено для эксплуатации в круглосуточном непрерывном автоматическом режиме. В обслуживании изделия необходимости нет.

2.4.1.1 Режим передачи

Скорость передачи данных между модемом и компьютером/терминальным контроллером — 115200 бит/с. Темп поступления данных модему регулируется на уровне терминального контроллера или подключенного компьютера.

Режим передачи данных инициализируется при поступлении данных на порт RS-232 модема. С порта RS-232 данные поступают в буферную память. Процессор модема автоматически выполняет преобразования для подавления импульсных помех, затухания сигнала и т.п., затем модем производит переключение радиостанции в режим передачи.

После окончания поступления данных модем производит переключение радиостанции в режим приема.

ЗАО НПФ ПРОРЫВ 2019 ctp. **13** / **29**

2.4.1.2 Режим приема

После поступления тональных сигналов на вход модем автоматически выполняет обратные операции с аналоговым сигналом, поступающим с демодулятора радиостанции, и преобразует тональные сигналы к сигналам СОМ-порта.

2.4.2 Взаимодействие с другими изделиями, входящими в состав АС

Изделие подключается к терминальному контроллеру или компьютеру, входящему в состав АС, и к радиостанции.

2.4.2.1 Подсоединение к терминальному контроллеру/компьютеру

Подсоединение изделия к терминальному контроллеру/компьютеру производится через последовательный порт RS-232, при этом используется розетка типа **DB-9F**. Для подсоединения используется модемный кабель **RS232 DB9F/DB9M**. Если кабель изготавливается самостоятельно, то достаточно обеспечить связь между разъемами DB9F – DB9M по трем проводам, которые подключаются к следующим контактам в разъемах: 2-2, 3-3, 5-5.

После подсоединения необходимо внести имя порта, к которому подключен модем, в параметры конфигурации терминального контроллера с помощью программы конфигурации (см. Терминальный контроллер ТК6L.10 Руководство по эксплуатации, Терминальный контроллер ТК6L.11 Руководство по эксплуатации).

2.4.2.2 Подсоединение к радиостанции

Для подсоединения модема к радиостанции используется розетка типа **EC350V-04P**, входящая в комплект поставки, и кабель типа **UTP**, 4 жилы. Наименования контактов разъемов нанесены на крышку модема.

Motorola

RS232-FX-909

PTT

Красный

П

Сине-белый

Синий

Рисунок 6 Подсоединение к радиостанции

Для обеспечения надежной связи рекомендуется использовать модем с радиостанциями, имеющими специальный аксессуарный разъем.

Внимание! Необходимо установить следующие параметры настройки радиостанции:

• полоса пропускания 10 кГц;

ЗАО НПФ ПРОРЫВ 2019 ctp. **14** / **29**

• плоская частотная характеристика.

2.4.2.3 Подсоединение изделия к источнику питания

При подсоединении источника питания используется розетка типа **EC350V-02P**, входящая в комплект поставки, и **многожильный кабель сечением не менее 0,2 мм²**. Наименования контактов для подключения питания нанесены на крышку модема.

2.5 Функции, выполняемые изделием

Изделие обеспечивает выполнение перечисленных ниже функций:

- Согласование уровней сигналов порта RS-232 компьютера или терминального контроллера и сигналов радиостанции.
- Обработка входных цифровых сигналов, поступающих от СОМ порта, для повышения помехоустойчивости.
- Обработка аналоговых сигналов, поступающих от радиостанции.
- Переключение режима прием/передача радиостанции.

2.6 Маркировка и пломбирование

2.6.1 Маркировка изделия

Маркировка с обозначением товарного знака и типа выполняется на передней панели изделия. На задней панели изделия имеется маркировка с обозначением типа изделия и заводского номера.

Порты, разъемы подключения питания и другие элементы изделия маркированы в соответствии с их назначением.

Маркировка тары и упаковочного материала удовлетворяет требованиям ГОСТ 9181-74.

2.6.2 Пломбирование изделия

На объекте Заказчика изделие вмонтировано в специальный шкаф. Шкаф пломбируется Госповерителем при проведении первичной поверки изделия на объекте Заказчика.

Изделие, его тара и упаковочный материал пломбированию не подлежат.

2.7 Упаковка

Упаковка изделия и эксплуатационной документации удовлетворяет требованиям, предъявляемым ГОСТ 9181-74.

2.7.1 Упаковочная тара

В качестве упаковочной тары применяется потребительская тара предприятия-поставшика.

ЗАО НПФ ПРОРЫВ 2019 ctp. **15** / **29**

2.7.2 Условия упаковывания

Упаковка изделия должна проводиться в закрытых вентилируемых помещениях при температуре от плюс 15°C до плюс 40°C и относительной влажности не более 80 % при отсутствии агрессивных примесей в окружающей среде.

2.7.3 Порядок упаковки

Подготовленное к упаковке изделие укладывают в тару, представляющую собой коробки из картона гофрированного (ГОСТ 7376-89 или ГОСТ 7933-89) согласно чертежам предприятия-изготовителя.

Изделие упаковывается с применением запаянных чехлов из водонепроницаемой пленки.

Разъемы, входящие в комплект поставки, упаковываются в отдельный запаянный чехол из водонепроницаемой пленки.

Для заполнения свободного пространства в упаковочную тару укладываются прокладки из гофрированного картона или пенопласта.

Эксплуатационная документация должна быть уложена в потребительскую тару вместе с изделием. На верхний слой прокладочного материала укладывается товаросопроводительная документация: упаковочный лист и ведомость упаковки.

Потребительская тара должна быть оклеена лентой клеевой 6-70 по ГОСТ 18251-87.

На упаковочную тару наклеивается лист проверки упаковки, содержащий данные о шифре и номере изделия, фамилию упаковщика, дату упаковки, фамилию контролера ОТК, дату проверки. Лист подписывается упаковщиком и контролером ОТК, после чего ставится штамп ОТК.

3 Использование по назначению

3.1 Эксплуатационные ограничения

Эксплуатация изделия должна производиться в условиях, где воздействие внешних факторов не превышает допустимые значения (см. раздел 2.2.4).

Существуют также ограничения, связанные с эксплуатационными параметрами системы, например, скоростями обмена.

3.2 Подготовка изделия к использованию

Изделие полностью готово к использованию по назначению по завершении монтажных и пусконаладочных работ.

Монтажные и пусконаладочные работы могут производиться представителями предприятия-изготовителя, уполномоченными сервисными центрами и представителями Заказчика.

3.2.1 Меры безопасности

Во избежание повреждения изделия следует внимательно ознакомиться с манипуляционными знаками, нанесенными на упаковку изделия.

3.2.2 Объем и последовательность внешнего осмотра изделия

При внешнем осмотре изделия следует проверить:

- комплектность изделия в соответствии с формуляром (паспортом);
- отсутствие видимых механических повреждений;
- чистоту гнезд, разъемов и клемм;
- состояние соединительных проводов, кабелей, переходников;
- состояния лакокрасочных покрытий и четкость маркировок;
- отсутствие отсоединившихся или плохо закрепленных модулей изделия (определяется визуально или на слух при изменении положения изделия).

3.2.3 Монтаж и демонтаж изделия

К монтажу, наладке и техническому обслуживанию изделия допускаются лица, имеющие квалификационную группу по электобезопасности не ниже третьей, прошедшие курс обучения и получившие соответствующее удостоверение.

Монтаж изделия должен производиться в помещениях промышленных предприятий, имеющих атмосферу, не содержащую химически активных и агрессивных паров и токопроводящей пыли, с содержанием пыли не более 3 мг/м³, в местах, защищённых от прямого попадания солнечных лучей, воды. Типичным, но не обязательным, является

размещение изделия в специальном шкафу. Электропитание изделия должно осуществляться от сети постоянного тока напряжением 10-35 В.

Допускается установка и монтаж изделия вне помещения в специально оборудованном пыле и влагонепроницаемом шкафу.

Корпус изделия предназначен для установки на DIN-рельс. После установки изделия на DIN-рельс к нему подводят кабели внешних подключений. Монтаж проводов кабелей осуществляется винтовыми зажимами. Расположение и назначение контактов соединителей и схемы подключения внешних устройств приведены в п. 2.4.

Внимание! Корпус изделия заземлять не требуется.

3.2.4 Параметрирование изделия

При вводе в эксплуатацию в составе AC изделие подлежит параметрированию (настройке на работу в составе системы). Параметрирование изделия может выполняться после монтажа изделия.

Параметрирование изделия должно осуществляться подготовленным техническим персоналом пуско-наладочной организации, владеющим навыками работы с вычислительной техникой и знакомым с задачами АС.

При правильном монтаже и параметрировании изделие начинает работу сразу после включения (подачи питания) и не требует дополнительной наладки. В случае ошибок, допущенных при параметрировании, может потребоваться некоторая наладочная работа, связанная с указанием правильных параметров.

3.2.4.1 Общие сведения

При проведении параметрирования необходимо выполнить согласование входных/выходных сигналов модема с сигналами радиостанции. Для этого выполните технологические операции, описанные в пп. 3.2.4.2-3.2.4.8.

3.2.4.2 Подключение модема к компьютеру

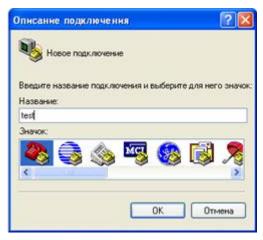
• подключите изделие к компьютеру через порт RS-232, см. раздел 2.4.2.1.

3.2.4.3 Запуск программы HyperTerminal

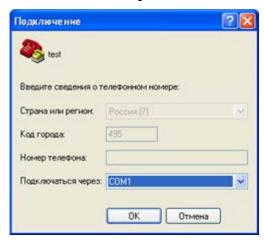
• Нажмите кнопку Пуск и выберите в меню пункты Программы->Стандартные ->Связь-> HyperTerminal.

Внимание! В ОС Windows Vista, Windows 7 не включена программа **HyperTerminal**. Требуется дополнительная установка.

3.2.4.4 Включение эмуляции терминала

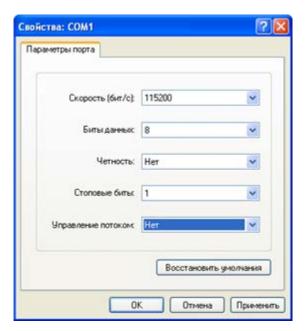

- 1. Выберите пункт меню Файл->Свойства
- 2. Откройте закладку Параметры
- 3. Выберите значение VT100 в поле Эмуляция терминала.

ЗАО НПФ ПРОРЫВ 2019 ctp. **18** / **29**



3.2.4.5 Настройка соединения

- 1. Выберите пункт меню Файл->Новое подключение.
- 2. Введите наименование подключения в поле Название в окне Описание подключения.



- 3. Нажмите кнопку ОК.
- 4. Выберите СОМ порт компьютера, к которому подключен модем, в поле **Подключаться через** в окне **Подключение**.

- 5. Нажмите кнопку ОК.
- 6. Установите следующие параметры в окне Свойства:

ЗАО НПФ ПРОРЫВ 2019 ctp. **19** / **29**

Скорость (бит/с):115200

Биты данных: 8

Четность: Нет

Стоповые биты: 1

Управление потоком: Нет

7. Нажмите кнопку ОК.

3.2.4.6 Установка технологической перемычки

Выполните следующие операции:

- отключите питание изделия;
- откройте корпус изделия;
- включите питание изделия;
- установите на плате модема технологическую перемычку JP2 (см. Рисунок 5).

3.2.4.7 Изменение параметров согласования сигналов

В результате в главном окне программы **HyperTerminal** будут выведены прошитые в EEPROM параметры согласования сигналов (см. Рисунок 7).

```
----- Start Monitor -----
 Delay of transmit
                       - 80 mS
                       - 128
 Transmission Level
                      - 128
 Attenuation Level
  -- Press the key for change. <ESC> - the cancelling ---
 1 - Set Delay of Transmit
 2 - Set Transmission Level
 3 - Set Attenuation Level
 O - Set by Default
 H - Help
 R - DUMP EE RAM Page
 E - DUMP EEProm Page
 SAVE<CR> - Save changes to EEProm Page.
 Q<CR> - Exit Monitor
 >Set Transmission Level (current: 128) [0-MIN...255-MAX<CR>, ESC-Cancel] - 150
 ...O'k. Print "SAVE<CR>" for save changes to EEProm Page.
 >SAVE
  -- Save EEPage ...O'k.
 >QQuit Monitor
```

Рисунок 7 Конфигурация параметров

Редактирование параметров

- 1. Введите номер пункта меню. В окне будет выведено значение параметра, прошитое в EEPROM.
- 2. Введите значение параметра, нажмите клавишу **<Enter>**.
- 3. Наберите SAVE в командной строке, нажмите клавишу **<Enter>**.

Transmission Level – уровень выходного сигнала (диапазон: 0-255).

- 0 соответствует минимальному уровню сигнала: 80 мВ rms/270 мВ pp
- 255 соответствует максимальному уровню сигнала: 150 мВ rms/4 В pp

Attenuation Level – уровень входного сигнала (диапазон: 0 - 255). Значение по умолчанию – 128, что соответствует входным сигналам модема 300-900 мВ rms.

- Если выходной сигнал радиостанции выше, следует уменьшить значение параметра.
- Если выходной сигнал радиостанции ниже, следует увеличить значение параметра.

Delay of transmit – время задержки между началом передачи данных радиостанции и передачей данных в эфир (по умолчанию 80 мс).

3.2.4.8 Удаление технологической перемычки

Выполните следующие операции:

- отключите питание изделия;
- удалите технологическую перемычку JP2 (см. Рисунок 5);

ЗАО НПФ ПРОРЫВ 2019 ctp. **21** / **29**

- закройте корпус изделия;
- убедитесь в работоспособности системы с установленными параметрами.

3.3 Использование изделия

Изделие запускается автоматически при подаче на него номинального напряжения питания. Изделие работает автоматически, без вмешательства оператора. При нормальном функционировании изделия светодиодные индикаторы светятся при обмене данных с терминальным модулем по соответствующему каналу.

Метрологические характеристики изделия определяются встроенным программным обеспечением, хранящимся в энергонезависимой памяти.

Первичная метрологическая поверка производится на предприятии-изготовителе при выпуске изделия. Первичная поверка изделия на месте эксплуатации производится в составе АС по утверждённой методике.

Периодическая поверка изделия на месте эксплуатации производится в составе АС с межповерочным интервалом четыре года.

Функциональные возможности изделия (использование изделия по назначению) обеспечиваются прикладным ПО.

3.4 Меры безопасности

В ходе эксплуатации изделия персоналу надлежит исполнять рекомендации, изложенные в «Правилах техники безопасности при эксплуатации электроустановок потребителей».

Запрещается работа с изделием лицам, не сдавшим зачет по технике безопасности в установленном порядке.

Запрещается производить какие-либо работы на незакрепленном изделии.

Категорически запрещается подсоединение (отсоединение) внешних электрических цепей при включенном электропитании изделия.

ЗАО НПФ ПРОРЫВ 2019 ctp. **22** / **29**

4 Техническое обслуживание

4.1 Техническое обслуживание изделия

Рекомендуется периодическое дистанционное наблюдение за работоспособностью изделия, для чего используются программы верхнего уровня АС.

Рекомендуется периодически проводить внешний осмотр изделия и проверку состояния соединительных кабелей и контактов клеммных соединений внешних цепей и цепей питания. Не допускается окисления проводов и металлических деталей клеммников.

При внешнем осмотре рекомендуется проверить: отсутствие механических повреждений корпуса и разъемов, отсутствие следов коррозии, отсутствие порывов и порезов на соединительных кабелях, надежность крепления изделия.

При необходимости затянуть винтовые соединения, устранить повреждения кабелей и нарушение изоляции проводов от датчиков и внешних устройств.

4.2 Состав и квалификация персонала

Все виды работ с изделием в составе АС должны производиться администратором АС. Администратор может пройти обучение в ЗАО «НПФ Прорыв».

4.3 Проверка работоспособности изделия

При проверке работоспособности изделия проверяется качество связи с masterустройством и правильность управления подключенными объектами.

Критерием качества связи является количество успешных обменов.

Если результаты проверки неудовлетворительны, необходимо определить причину неисправности (повреждение кабеля, неверное параметрирование, отказ изделия и пр.) и принять меры по устранению неисправности.

4.4 Техническое освидетельствование

Изделие, эксплуатируемое в составе АС, подлежит опломбированию уполномоченным представителем Заказчика с момента ввода системы в действие.

Опломбированное изделие подлежит периодическому освидетельствованию уполномоченными представителями Заказчика на предмет сохранности пломб. Периодичность освидетельствования определяется Заказчиком. Результаты освидетельствования могут фиксироваться в формуляре (паспорте) изделия.

5 Текущий ремонт

Изделие подлежит ремонту, если оно не соответствует заявленным метрологическим характеристикам. Ремонт изделия производится на предприятии-изготовителе или в сервисном центре предприятия-изготовителя, имеющем разрешение производителя на проведение данного вида работ.

Эксплуатационный персонал потребителя должен произвести демонтаж изделия и его отправку для ремонта с указанием характера неисправности.

ЗАО НПФ ПРОРЫВ 2019 ctp. **24 / 29**

стр. **25 / 29**

6 Хранение

6.1 Условия хранения изделия

Изделие должно храниться в условиях по ГОСТ 15150-69, группа 2С (закрытые или другие помещения с естественной вентиляцией без искусственно регулируемых климатических условий) при температуре от минус 40 °C до плюс 60 °C и относительной влажности воздуха не более 95 % (при плюс 35 °C).

В воздухе помещения для хранения изделия не должно присутствовать агрессивных примесей (паров кислот, щелочей).

Требования по хранению относятся к складским помещениям поставщика и потребителя.

6.2 Срок хранения

Срок хранения изделия в потребительской таре без переконсервации – не менее шести месяцев.

6.3 Предельный срок хранения

При длительном (более шести месяцев) хранении изделие должно находиться в упакованном виде и содержаться в отапливаемых хранилищах не более 3 лет при температуре окружающего воздуха от плюс 5 °C до плюс 40 °C и относительной влажности воздуха не более 80% при температуре плюс 25 °C.

6.4 Правила постановки изделия на хранение

При постановке изделия на длительное хранение его необходимо упаковать в упаковочную тару предприятия-поставщика.

6.5 Правила снятия изделия с хранения

Ограничения и специальные процедуры при снятии изделия с хранения не предусмотрены.

При снятии с хранения изделие следует извлечь из упаковки.

7 Транспортирование

7.1 Условия транспортирования

Допускается транспортирование изделия в транспортной таре всеми видами транспорта (в том числе в отапливаемых герметизированных отсеках самолетов) без ограничения расстояний. При перевозке в железнодорожных вагонах вид отправки — мелкий малотоннажный.

При транспортировании изделия должна быть предусмотрена защита от попадания пыли и атмосферных осадков. Не допускается кантование изделия.

Климатические условия транспортирования приведены ниже (Таблица 12).

Таблица 12. Климатические условия транспортирования

Влияющая величина	Значение
Диапазон температур	от минус 40 °C до плюс 60 °C
Относительная влажность, не более	95% при 35 °C
Атмосферное давление	от 70 до 106,7 кПа, (537- 800 мм рт. ст.)

Транспортная тряска не должна превышать 120 ударов в минуту с максимальным ускорением 19.6 м/с2 и продолжительностью воздействия 30 мин.

7.2 Подготовка к транспортированию

Изделия должны быть закреплены для обеспечения устойчивого положения, исключения взаимного смещения и ударов. При проведении погрузочно-разгрузочных работ и транспортировании должны строго выполняться требования манипуляционных знаков, нанесенных на транспортной таре.

8 Утилизация

Изделие не содержит в своём составе опасных или ядовитых веществ, способных нанести вред здоровью человека или окружающей среде и не представляет опасности для жизни, здоровья людей и окружающей среды по окончании срока службы. В этой связи утилизация изделия может производиться по правилам утилизации общепромышленных отходов. Утилизация осуществляется отдельно по группам материалов: пластмассовым элементам, металлическим крепежным деталям.

Содержание драгоценных металлов в компонентах изделия (электронных платах, разъёмах и т.п.) крайне мало, поэтому их вторичную переработку производить нецелесообразно.

ЗАО НПФ ПРОРЫВ 2019 ctp. **27** / **29**

Список таблиц

Таблица 1. Термины, аббревиатуры и сокращения	4
Таблица 2. Использованные при разработке документа материалы	5
Таблица 3. Основные технические характеристики	7
Таблица 4. Параметры электропитания	
Таблица 5. Рабочие условия применения изделия (климатические воздействия)	
Таблица 6. Рабочие условия применения изделия (механические воздействия)	9
Таблица 7. Параметры безопасности изделия	9
Таблица 8. Параметры надежности	10
Таблица 9. Использование портов	11
Таблица 10. Индикация режимов работы изделия	12
Таблица 11. Использование перемычек	13
Таблица 12. Климатические условия транспортирования	26
Список рисунков	
Рисунок 1 Структура кода изделия	6
Рисунок 2 Общий вид аппаратного блока изделия	10
Рисунок 3 Вид панели аппаратного блока с элементами подключения и индикации	11
Рисунок 4 Подключение модема	12
Рисунок 5 Соответствие контактов разъема обозначениям перемычек	13
Рисунок 6 Подсоединение к радиостанции	14
Рисунок 7 Конфигурация параметров	21

9 Лист регистрации изменений

Дата	Раздел	Содержание	Автор
18.07.2019		Первая редакция изделия и документации.	ЗАО «НПФ ПРОРЫВ»

Утверждаю

	ЗАО «НПФ ПРОРЫВ»,		ЗАО «НПО	ЗАО «НПФ ПРОРЫВ»,	
	Мартынов А. И.		Карта	шев А.А.	
	Генеральный директор		Техничес	Технический директор	
_					
	«»	2019 г.	«»	2019 г.	

ЗАО НПФ ПРОРЫВ 2019 ctp. **29** / **29**